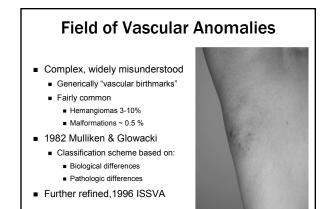
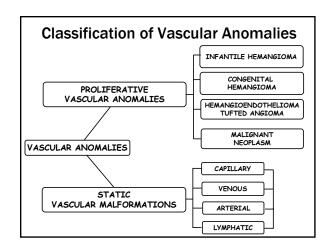
A Systematic Approach to MR imaging of **Vascular Anomalies**

Elizabeth M Hecht MD Rafael Rivera MD Assistant Professo New York University


ISMRM 2009

Honolulu, Hawai 23 2009-11:50 au

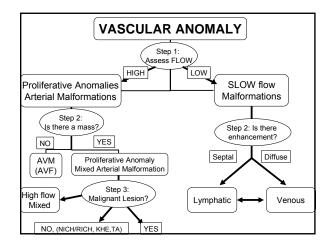

Case Based Learning

Objectives

- Understand the role of MRA is assessment of vascular anomalies
- Become familiar with the classification system of anomalies
- Describe a systematic approach to differentiation of anomalies
- Review characteristic imaging features of the more common entities

Garzon et al J Ac Ped Derm 2007; Haggstrom et al J Ped 2007

MRI of Vascular Anomalies CE-MRI is the *ideal* radiologic exam

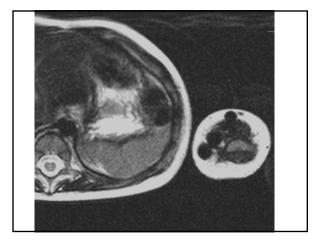

- Non-invasive, no iodinated contrast, no radiation
- Cons: sedation. \$
- Why MRI?
- Define lesion extent
- Evaluate flow characteristics anatomic and temporal
- Classify anomaly into a category based on flow characteristics and imaging appearance
 - Keep in mind → clinical context is very important

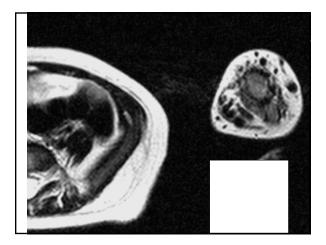
Standard MR Protocol

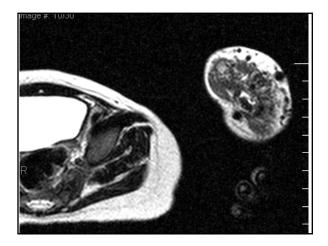
- Localizer
- T2 FSE FS fat-suppressed sequence At least 2 planes, coverage large field of view
 IR may be used as an alternative if poor Freq. Selective FS
- SSFSE, single plane look for flow voids
- +/- non FS T1 SE, single plane (axial)
- 3D T1 fat-suppressed GRE pre, axial and/or cor
- Time-resolved contrast-enhanced MRA
- Appropriate plane, < 6 second TA if possible
 Parallel imaging + echo-sharing to improve temporal resolution
- 3D T1 fat-suppressed GRE post, axial and/or coronal

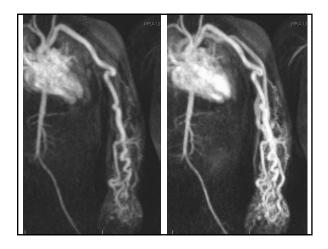
Typical Imaging Parameters

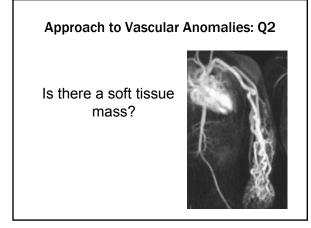
- Time-resolved MRA:
 - May use parallel imaging + echo sharing techniques to keep acquisition time down to ideally < 6 sec
 10-15 data sets acquired consecutively
- Initial unenhanced mask used for subtractions
- No timing run needed
 - Empiric 5-10 second delay useful to reduce number of unenhanced data sets but in very young patient with rapid circulation time start injection after mask obtained

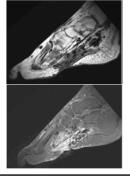


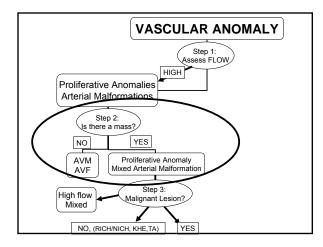

Approach to Vascular Anomalies: Q1

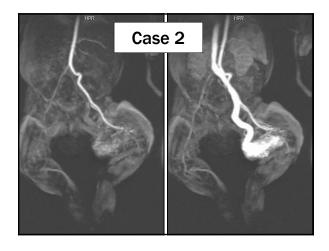

Is this a high-flow lesion? Time-resolved CE-MRA (< 6 sec, opacifies with contrast)

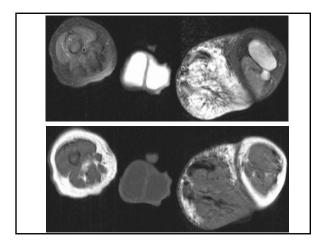

Flow voids
GRE: flow-related enhancement
Comparison with contra-lateral side



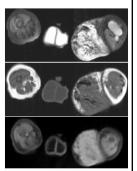







High flow, no mass = Arteriovenous Malformation

- Network of abnormal communications between arteries and veins
- MR
 - High flow enlarged vascular channels
 - Flow voids
 - Typically no associated soft tissue mass

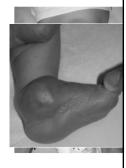

Approach to Vascular Anomalies: Q2 Is there a soft tissue mass?

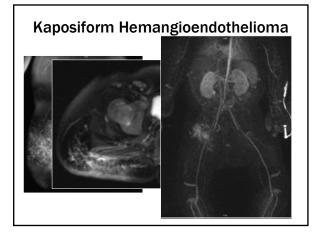
If Yes, think proliferative anomaly rather than AVM

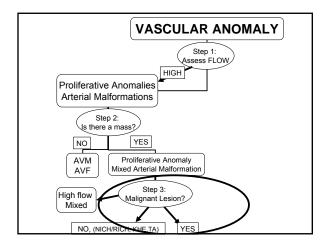
Diagnosis: Congenital Hemangioma

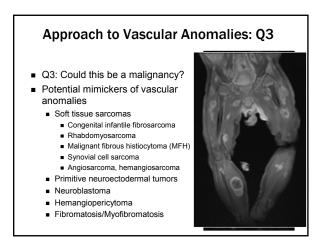
- Clinically and histologically distinct hemangiomas
- Fully developed at birth
- Undergo no further postnatal enlargement
- Two types (RICH>NICH):
 - Rapidly involuting congenital hemangioma (RICH)
 - Non-involuting congenital hemangioma (NICH)

Infantile Hemangioma Most common vascular tumor of infancy

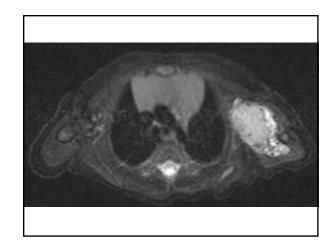

- of infancyRapid *postnatal* proliferation
- Variable stability
- Slow involution

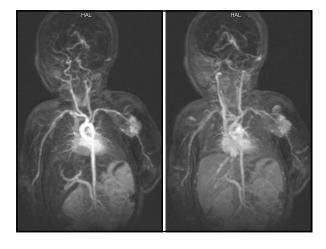


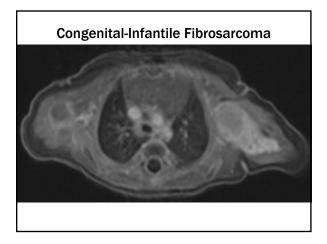

Kaposiform Hemangioendothelioma

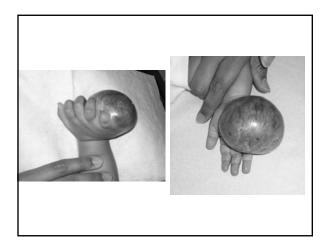

- Rare, aggressive vascular neoplasm
- Can be present at birth or develop postnatally
 - Typically ill-defined red-purple indurated plaque
- Predilection for trunk, extremities, retroperitoneum
- Often associated with
 - Kasabach-Merritt phenomenon

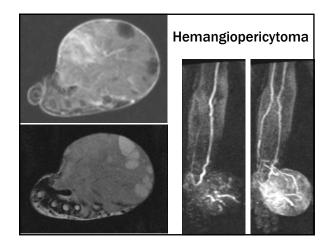
 Severe coagulopathy due to platelet trapping

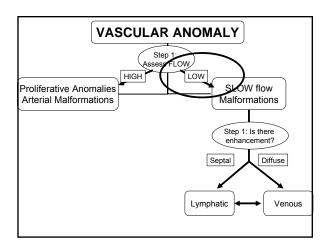


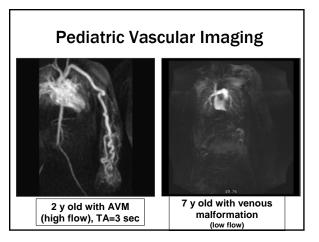


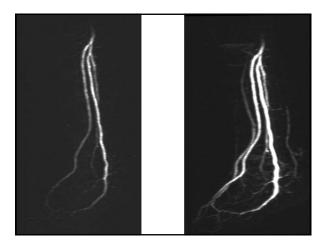

Differentiating Vascular Anomalies from Malignant Masses

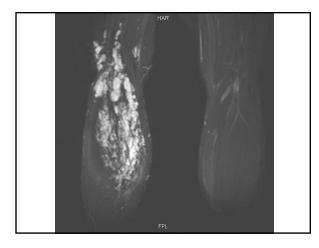

- Signal intensity, enhancement, and morphology
 - T1 signal intensity similar
 - T2 SI and contrast enhancement more uniform for hemangiomas
 - Lobulation, septation, and central low-signal intensity foci were all more common in hemangiomas
 Presence of all three was specific
- Clinical context extremely important!
- Any doubt -> need tissue!

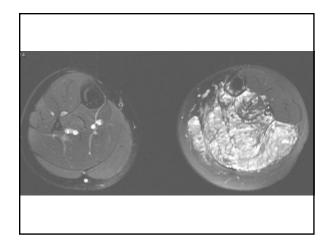

Teo et al (AJR 2000)

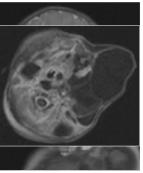




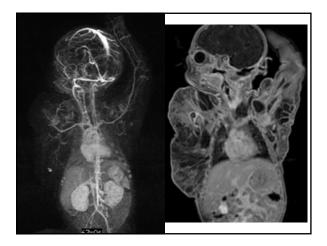



Approach to Vascular Anomalies: Q4


- Question Four: Okay, we're left with a low-flow lesion. Is it primarily a venous malformation or lymphatic malformation?
- Enhancement pattern:
 - Septal vs diffuse progressive enhancement

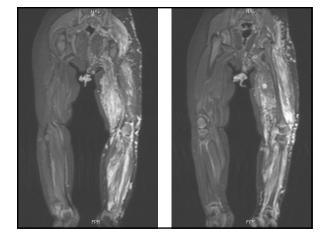

Venous Malformations

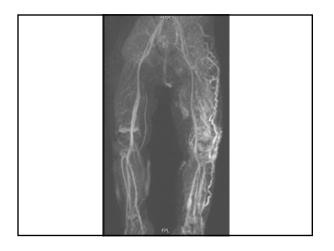
- MC asymptomatic vascular lesion
- Present at birth, may not be seen till years later
- Slow steady enlargement
- Superficial or deep, determines appearance
 Can be painful to the touch, vague congestive pain
- Cx: thrombosis/embolism, hemorrhage

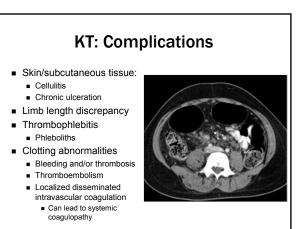


Lymphatic Malformation

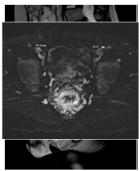
- Sponge-like collections of abnormal lymphatic channels/spaces
 - Macrocystic vs microcystic
- Neck, axilla predilection
- Steadily increase in size
- Lymphangioma, cystic hygroma (poorer names)






Klippel Trenaunay Syndrome

- Classic triad:
 - 1. Slow-flow vascular malformations
 - Cutaneous capillary malformation
 - Underlying slow flow malformation
 - 2. Bone and/or soft tissue hypertrophy
 - Venous varicosities/deep venous system anomalies



KT: Visceral Involvement

- Not uncommon
 At NYU, pelvis gets imaged along with LE
- Pelvic extension fairly common
- Pay attention to GI/GU involvement
 - Can be source of lifethreatening hemorrhage

Summary MR is the single best imaging test Lesions best diagnosed on basis of both clinical & imaging findings Remember the 4 key questions High or low flow lesion? Soft tissue mass? Enhancement pattern? Could this be a neoplasm?